SIEMENS-LOGO
SIEMENS-LOGO
SIEMENS-LOGO
SIEMENS-LOGO
SIEMENS-LOGO

Digitalization as the new critical success factor

Aug. 30, 2017
Let’s set the record straight.
By Arun Jain, Vice President--Siemens Industry, Inc., Motion Control Business
Bernd Heuchemer, Vice President of Marketing--SiemensAlisa Coffey, MarCom Manager of Aerospace, Automotive and OEMs--Siemens Industry, Inc.

It seems every trade magazine nowadays has an article on Industry 4.0 or big data or the Internet of Things or the digital factory. These terms are being pitched around like a rugby ball and almost always with a decided lack of clear definitions.  

So, as the saying goes, let’s set the record straight.

History

After German Chancellor Angela Merkel ordered a study about the manufacturing environment, the German Academy of Science & Engineering drafted the vision of Industrie 4.0. It was planned as a coordinated initiative between the IT world, universities and various manufacturing associations, designed to reshape industry. It would seek to combine the physical, virtual, IT and cyber systems, thereby creating a new working environment between worker and machine. The 4.0 part of the name, incidentally, derives from the fourth industrial revolution, the predecessors being the emergence of mechanization through steam/water power, the impact of electricity on mass production and the invention of the computer, which led to our modern concepts of IT and automation.  

Industry 4.0 (English spelling) has been adopted worldwide as a functional goal in industry, especially the manufacturing world. As a sidebar, we all know today’s market has been additionally impacted by the emergence of new materials and now 3D printing, but that’s another story. Industry 4.0 represents a highpoint of dynamic achievement, where every company, whether a large OEM, major tier supplier or smaller job shop, can implement and benefit from the technologies and communications platforms available today.  

Without question, Industry 4.0 is less a vision of the future and more a vibrant collaboration between IT, machine builders, industrial automation integrators and especially motion control suppliers, who function at the heart of the machines, simultaneously effecting motion, then gathering and transmitting the relevant data to the appropriate control link in the company’s infrastructure, all at speeds measured in nanoseconds.  

To work effectively, this concept requires a standardization of platforms in both communications and languages used.

Integration in practice

That value can often come in unseen ways, such as the access provided to your workforce for prompt and effective answers to questions. Perhaps it’s a 24-hour hotline, perhaps it’s an onboard technical manual in the machine controller with troubleshooting capability on-screen, or perhaps it’s a supplier-provided training webinar that will expand the way your operators and maintenance personnel use their machines. Taking full advantage of these services will improve the productivity of your factory floor. You hear about total cost of ownership (TCO) and this is one of those subtle but very real factors that drives that calculation.  

Another key area in remaining competitive is the cost of energy. The more a machine can do with less energy, the more efficient and profitable it becomes. That’s the obvious part. How to get there can take many forms. For example, the simple notion of regenerative energy, a concept in play in the electrical world since Sprague’s regen braking motor in 1886, can be monitored and manipulated by today’s drives, putting power back onto the grid or using it to drive other equipment. By simply implementing “smart” motors, drives and other equipment, manufacturers of all types can improve their productivity and the bottom line—a win-win, to be sure.  

Lastly, safety must be paramount, not only as it protects the workforce, but also as it contributes to overall efficiency and the profit picture. Fewer accidents result when there is a reduction in the mean time to repair and equipment is replaced before it malfunctions and hurts someone. This requires implementing both preventive and predictive maintenance protocols at your company.

Examples from industry today

Confidence in digital manufacturing is higher than ever among leading companies these days and for good reason. Industry leaders are beginning to realize benefits from their investments in digital technologies and next-generation robotics. One carmaker offers a prime example of how the benefits of digitalization can accrue. In their case, everything from design to execution planning is implemented digitally. They once required 30 months to manufacture their luxury sports sedan, from start to finish. Thanks to digitalization, production time was reduced to 16 months and the company succeeded in achieving a threefold manufacturing productivity increase. Another successful application of digitalization can be found at another car plant equipped with more than 1,000 robots, all of which help to weld vehicle bodies with accuracy within a tenth of a millimeter. Robots also control the first fully automated hang-on assembly line, which attaches the doors, hoods and hatches to the vehicles – a process that previously was entirely manual. The plant also has an automated engine marriage process and a new integrated paint process that uses 30% less energy and produces 40% fewer emissions.

Digitalization and its proper implementation is now emerging as a critical success factor for industry. It means gathering more data and analyzing that data in a virtual context so that better decisions and, in many cases, predictive decisions can be made. It’s changing the way products are developed, built and delivered through ma­chine learning, additive manufacturing and advanced robotics. And it’s changing the way products evolve through cloud technology, knowledge automation and big-data analytics.

Digital technologies present a billion-dollar opportunity for manufacturers to transform their production and reorient their value proposition to meet the needs of today’s digital consumers. The competitiveness of the manufacturer increases because digitalization introduces even higher speed into the product development lifecycle, thus enabling faster response to consumer demand.

Simulation is one digitalization tool which drives shorter innovation cycles, even when highly complex products and large volumes of manufacturing data are involved. In a simulation environment, a virtual model of each component in a device or machine is generated, which allows designers and builders to explore what-if scenarios easily and quickly.

These virtual models have come to be known as “digital twins”. They analyze the gathered data and then use it to run simulations and benchmark performance, allowing plant operators to pinpoint where gains can be made. By pairing both virtual and physical worlds (the twins), analysis of data and monitoring of systems can actively avert problems before they occur, which prevents downtime, develops new efficiency opportunities and enables planning for the future. Existing assets can be modeled against their digital twins and new designs can be tested in the virtual world, saving time, money and resources. Testing the interaction on a screen can verify a modification to a car engine, for instance, before new holes need to be drilled. Such scenarios are occurring at every supply chain step in the auto, aero, medical, off-highway, appliance and other industries.

Conclusion

A connected digital factory and the big data it generates provide manufacturers with the insight and agility required to compete. Digitalization gives manufacturers the capability to increase productivity across their entire value chain, from design and engineering to production, sales and service, with integrated feedback throughout the process. In practical terms, this means faster time-to-market, greater flexibility and enhanced availability of systems on the plant floor.

The integration of digitalization into operations is also a flexible process. Digitalization can be adopted at any pace that fits the needs of the organization. Some manufacturers start with retrofits or may begin by digitalizing one assembly line or even one machine at a time. By whatever means a company chooses to begin its path to digitalization, the critical challenge is to start now.